
7.1.10

(a) ∫
c

f(x, y, z) ds =

∫ 2π

0

(sin t+ cos t+ t)
√

sin2 t+ cos2 t+ 12 dt =

=

∫ 2π

0

√
2(sin t+ cos t+ t) dt = 2

√
2π2

(b) ∫
c

f(x, y, z) ds =

∫ 2π

0

cos t
√

sin2 t+ cos2 t+ 12 dt =

=

∫ 2π

0

√
2 cos t dt = 0

7.1.14

(a) We have c(θ) = (r cos θ, r sin θ) where r is a function of θ, hence c′(θ) =
(r′ cos θ − r sin θ, r′ sin θ + r cos θ) and finally

c′(θ) =
√

(r′ cos θ − r sin θ)2 + (r′ sin θ + r cos θ)2 =
√

(r′)2 + r2

Substituting this into the path integral gives the desired result.

(b) The arclength is just the path integral of the function 1. This gives

l(c) =

∫ 2π

0

√
r2 + (r′)2 dθ =

∫ 2π

0

√
(1 + cos θ)2 + (− sin θ)2 dθ =

=

∫ 2π

0

√
2 + 2 cos θ dθ

Plugging cos θ = cos2(θ/2)− sin2(θ/2) we get 2 + 2 cos θ = 4 cos2(θ/2), which
plugging it back into the integral gives that the arclength is 8.

7.1.17
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Using the expression given above we have

ȳ =

∫
c
y(x, y, z) ds

l(c)
=

∫ π
0
a sin θ

√
(−a cos θ)2 + (a sin θ)2 ds

aπ

Which gives ȳ =
2a2

aπ
=

2

π
a.

7.2.3

(a) ∫ 1

0

(t, t, t) · (1, 1, 1) dt =

∫ 1

0

3t dt = 3/2

(b) ∫ 2π

0

(cos t, sin t, 0) · (− sin t, cos t, 0) dt =

∫ 2π

0

0 dt = 0

(c) ∫ 2π

0

(sin t, 0, cos t) · (cos t, 0,− sin t) dt =

∫ 2π

0

0 dt = 0

(d) ∫ 2

−1
(t2, 3t, 2t3) · (2t, 3, 6t2) dt =

∫ 2

−1
2t3 + 9t+ 12t5 dt = 147

7.2.4

Using that if x(t) then dx = x′(t) dt we have:

(a)∫
c

x dy − y dx =

∫ 2π

0

cos t(cos t dt)− sin t(− sin t dt) =

∫ 2π

0

1 dt = 2π

(b)∫
c

x dy + y dx =

∫ 2π

0

cos t(cos t dt) + sin t(− sin t dt) =

∫ 2π

0

cos(2t) dt = 0
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(c) We split the integral in two, each of them consisting of each segment.
The first one is parametrized as (1− t, t, 0) and the other one as (0, 1− t, t),
both with t ∈ [0, 1].

First segment:

∫
c

yz dx+xz dy+xy dz =

∫ 1

0

t(0)(−1) dt+(1−t)(0)(1) dt+(1−t)t(0) dt = 0

Second segment:

∫
c

yz dx+xz dy+xy dz =

∫ 1

0

(1−t)(t)(0) dt+(0)(t)(−1) dt+(0)(1−t)(1) dt = 0

And hence the total integral is 0.

(d) Now our path is (t, 0, t2) with t ∈ [−1, 1]:

∫
c

x2 dx− xy dy + dz =

∫ 1

−1
t2 dt+ 0 dt+ 2t dt = 2/3

7.3.18

We have that

f(1, 1, 2)− f(0, 0, 0) =

∫
c

f · ds

where c is any path from the origin to (1, 1, 2). For instance we can take
c(t) = (t, t, 2t). In this case∫

c

f · ds =

∫ 1

0

(4t3 + 4t)et
2

dt

Which has as primitive 2t2et
2
. This gives that the path integral is 2e and

hence f(1, 1, 2) = 5 + 2e.
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7.4.14

The partial derivatives of the parametrization at (1, 1) give the vectors Tu =
(2, 0, 2) and Tv = (0, 2, 2). This means that the normal vector is parallel to
Tu × Tv = (−4,−4, 4) and thus we can pick (−1,−1, 1). Since the plane has
to pass through the point (1, 1, 2) we have that the plane is given by

(x− 1, y − 1, z − 2) · (−1,−1, 1) = 0⇐⇒ x+ y − z = 0

7.4.20

(a) The range of the a matrix is the vector space spanned by its columns,
which are precisely Tu and Tv.

(b) Since we are in a 3-dimensional vector space, we have that w is per-
pendicular to a given vector if and only if it lies in its perpendicular plane.
In our case, the plane perpendicular to Tu × Tv is spanned by Tu and Tv,
which by (a) means that w is perpendicular if and only if it is in the range
of DΦ(u0, v0).

(c) The tangent plane can be parametrized as a point inside plus any com-
bination of two spanning vectors. This means that a valid parametrization
would be

Φ(u0, v0) + (u− u0)Tu + (v − v0)Tv

Which written in matricial form gives the desired result.

7.4.5

(a)
Tu = (eu cos v, eu sin v, 0)

Tv = (−eu sin v, eu cos v, 1)

And hence
Tu × Tv = (eu, eu, e2u)

(b) In this case Tu = (0, 1, 0) and Tv = (−1, 0, 1). We have Tu×Tv = (1, 0, 1)
and that the plane passes through (0, 1, π/2). Hence the equation of the
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plane is
(x, y, z − π/2) · (1, 0, 1) = 0⇐⇒ x+ z = π/2

(c)

A(D) =

∫ ∫
D

‖Tu × Tv‖ dv du =

∫ 1

0

∫ π

0

eu
√

2 + e2u dv du =

= π

∫ 1

0

eu
√

2 + e2u dv

Which is rather hard to compute.

7.4.10

We will use the standard spherical parametrization with constant radius one.
Note that the fact that being inside the cone translates into φ ∈ [0, π/4].

Then we have that this portion of the sphere is given by

Φ(φ, θ) = (sinφ cos θ, sinφ sin θ, cosφ)

This gives
Tφ = (cosφ cos θ, cosφ sin θ,− sinφ)

Tθ = (− sinφ sin θ, sinφ, cos θ, 0)

And thus
Tφ × Tθ = (sin2 φ cos θ, sin2 φ sin θ, cosφ sinφ)

With norm
‖Tφ × Tθ‖ = | sinφ|

Hence

A(Φ) =

∫ π/4

0

∫ 2π

0

| sinφ| dθ dφ = 2π

(
1−
√

2

2

)
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